Genome mining, phylogenetic, and functional analysis of arsenic (As) resistance operons in Bacillus strains, isolated from As-rich hot spring microbial mats

Author:

Flores Aurora,Valencia-Marín María F.,Chávez-Avila Salvador,Ramírez-Díaz Martha I.,de los Santos-Villalobos Sergio,Meza-Carmen Victor,del Carmen Orozco-Mosqueda Ma.,Santoyo GustavoORCID

Abstract

AbstractThe geothermal zone of Araró, México, is located within the trans-Mexican volcanic belt, an area with numerous arsenic (As)-rich hot springs. In this study, the draft genome sequence of two endemic Bacillus strains (ZAP17 and ZAP62) from Araró microbial mat hot springs was determined, which were able to grow on arsenate (up to 64 mM) and arsenite (up to 32 mM). Phylogenetic analysis based on 16S rRNA and gyrB sequences, as well as genome sequence analysis based on average nucleotide identity (>96%) and digital DNA–DNA hybridization (>70%), indicated that these strains belong to the Bacillus paralicheniformis ZAP17 and Bacillus altitudinis ZAP62. Furthermore, through genome mining, it was identified two arsenic resistance operons, arsRBC, and arsRBCDA in both strains as potential determinants of arsenic (As) resistance. Predicted ArsA (arsenial pump-driving ATPase), ArsB (Arsenical efflux pump protein), ArsC (Arsenate reductase), ArsD (Arsenical efflux pump protein) and ArsR (Metalloregulator/ars operon repressor) proteins, clearly grouped with their respective clades corresponding to other characterized bacterial species, mainly Firmicutes. To further evaluate the functionality of the ars operons in ZAP17 and ZAP62 strains, our results showed that arsRBC and arsRBCDA genes were expressed in the presence of arsenite (III). Finally, the presence of ars operons in the genome of Bacillus species residing in As-rich environments, such as the Araró hot springs, might be a potential mechanism to survive under such harsh conditions, as well as to design sustainable bioremediation strategies.

Publisher

Cold Spring Harbor Laboratory

Reference64 articles.

1. Isolation and characterization of Thermophilic bacteria from Gavmesh Goli hot spring in Sabalan geothermal field, Iran: Thermomonas hydrothermalis and Bacillus altitudinis isolates as a potential source of Thermostable Protease;Geomicrobiology Journal,2021

2. Arsenic in drinking water: is 10 μg/L a safe limit?;Current Pollution Reports,2019

3. The ArsD As(III) metallochaperone

4. Assessment of residential soil contamination with arsenic and lead in mining and smelting towns of northern Armenia;Journal of Geochemical Exploration,2018

5. Characterization of a promiscuous cadmium and arsenic resistance mechanism in Thermus thermophilus HB27 and potential application of a novel bioreporter system;Microbial Cell Factories,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3