Fragment libraries designed to be functionally diverse recover protein binding information more efficiently than standard structurally diverse libraries

Author:

Carbery AnnaORCID,Skyner RachaelORCID,von Delft FrankORCID,Deane Charlotte M.ORCID

Abstract

AbstractCurrent fragment-based drug design relies on the efficient exploration of chemical space though the use of structurally diverse libraries of small fragments. However, structurally dissimilar compounds can exploit the same interactions on a target, and thus be functionally similar. Using 3D structures of many fragments bound to multiple targets, we examined if there exists a better strategy for selecting fragments for screening libraries. We show that structurally diverse fragments can be described as functionally redundant, often making the same interactions. Ranking fragments by the number of novel interactions they made, we show that functionally diverse selections of fragments substantially increase the amount of information recovered for unseen targets compared to other methods of selection. Using these results, we design small functionally efficient libraries that are able to give significantly more information about new protein targets than similarly sized structurally diverse libraries. By covering more functional space (rather than chemical space), more diverse sets of drug leads can be generated, increasing the chances of fragment screens resulting in viable drug candidates.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3