Double NPY motifs at the N-terminus of Sso2 synergistically bind Sec3 to promote membrane fusion

Author:

Peer Maximilian,Yuan Hua,Zhang Yubo,Korbula Katharina,Novick Peter J.,Dong GangORCID

Abstract

AbstractExocytosis is an active vesicle trafficking process by which eukaryotes secrete materials to the extracellular environment and insert membrane proteins into the plasma membrane. The final step of exocytosis in yeast involves the assembly of two t-SNAREs, Sso1/2 and Sec9, with the v-SNARE, Snc1/2, on secretory vesicles. The rate-limiting step in this process is the formation of a binary complex of the two t-SNAREs. Despite a previous report of acceleration of binary complex assembly by Sec3, it remains unknown how Sso2 is efficiently recruited to the vesicle-docking site marked by Sec3. Here we report a crystal structure of the pleckstrin homology (PH) domain of Sec3 in complex with a nearly full-length version of Sso2 lacking only its C-terminal transmembrane helix. The structure shows a previously uncharacterized binding site for Sec3 at the N-terminus of Sso2, consisting of two highly conserved triple residue motifs (NPY: Asn-Pro-Tyr). We further reveal that the two NPY motifs bind Sec3 synergistically, which together with the previously reported binding interface constitute dual-site interactions between Sso2 and Sec3 to drive the fusion of secretory vesicles at target sites on the plasma membrane.SignificanceSNARE assembly, which involves one v-SNARE with two t-SNARE proteins, drives the fusion of vesicles to target compartments. The rate-limiting step in SNARE assembly is the assembly of the two t-SNARE proteins on the target membrane. Previous studies in yeast showed that Sec3, a component of the exocyst vesicle tethering complex, directly interacts with the t-SNARE protein Sso2 to promote fast assembly of an Sso2-Sec9 binary t-SNARE complex. This paper presents a new crystal structure of the Sec3 PH domain in complex with a nearly full-length version of Sso2, which reveals a previously unknown binding site for Sec3 at the N-terminus of Sso2. Our work demonstrates that the dual-site interactions between Sso2 and Sec3 plays an essential role in promoting the fusion of secretory vesicles at target sites on the plasma membrane.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3