Recognition of copy-back defective interfering rabies virus genomes by RIG-I triggers the antiviral response against vaccine strains

Author:

Aouadi WahibaORCID,Najburg Valérie,Legendre RachelORCID,Varet HugoORCID,Kergoat LaurianeORCID,Tangy Frédéric,Larrous FlorenceORCID,Komarova Anastassia V.,Bourhy HervéORCID

Abstract

AbstractRabies virus (RABV) is a lethal neurotropic virus that causes 60,000 human deaths every year around the world. A typical feature of RABV infection is the suppression of type I and III interferon (IFN)-mediated antiviral response. However, molecular mechanisms leading to RABV sensing by RIG-I-like receptors (RLR) to initiate IFN signaling remain elusive. Here, we showed that RABV RNAs are recognized by RIG-I (retinoic acid-inducible gene I) sensor resulting in an IFN response of the infected cells but that this global feature was differently modulated according to the type of RABV used. RNAs from pathogenic RABV strain, THA, were poorly detected in the cytosol by RIG-I and therefore mediated a weak antiviral response. On the opposite, we revealed a strong interferon activity triggered by the RNAs of the attenuated RABV vaccine SAD strain mediated by RIG-I. Using next-generation sequencing (NGS) combined with bioinformatics tools, we characterized two major 5’copy-back defective interfering (5’cb DI) genomes generated during SAD replication. Furthermore, we identified a specific interaction of 5’cb DI genomes and RIG-I that correlated with a high stimulation of the type I IFN signaling. This study indicates that RNAs from a wild-type RABV poorly activate the RIG-I pathway, while the presence of 5’cb DIs in vaccine SAD strain serves as an intrinsic adjuvant that strengthens its efficiency by enhancing RIG-I detection and therefore strongly stimulates the IFN response.HighlightsRABV pathogenic strain replication in vitro is characterized by the absence of defective interfering genomes thus induces a weak RLR-mediated innate immunity antiviral response.RABV vaccine attenuated strain shows a high release of 5’ copy-back defective interfering genomes during replication in vitro and therefore enhances a strong antiviral response upon infection.RIG-I is the main sensor for RABV RNA detection within cells.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3