POPEYE directly regulates bHLH Ib genes and its own expression

Author:

Pu Meng Na,Liang Gang

Abstract

AbstractIron (Fe) is an essential trace element for plants. When suffering from Fe deficiency, plants modulate the expression of Fe deficiency responsive genes. POPEYE (PYE) is a key bHLH transcription factor involved in Fe homeostasis. However, the molecular mechanism of PYE regulating the Fe deficiency response remains elusive. We found that the over-expression of PYE attenuates the expression of Fe deficiency responsive genes. PYE directly represses the transcription of bHLH Ib genes (bHLH38, bHLH39, bHLH100, and bHLH101) by associating with their promoters. Although PYE contains an Ethylene response factor-associated Amphiphilic Repression (EAR) motif, it does not interact with the transcriptional corepressors TOPLESS/TOPLESS-RELATED (TPL/TPRs). Subcellular localization analysis indicated that PYE localizes in both the cytoplasm and nucleus. PYE contains a Nuclear Export Signal (NES) which is required for the cytoplasmic localization of PYE. The mutation of NES amplifies the repression function of PYE, resulting in downregulation of Fe deficiency responsive genes. Co-expression assays indicated that bHLH IVc members (bHLH104, bHLH105/ILR3, and bHLH115) facilitate the nuclear accumulation of PYE. Conversely, PYE indirectly represses transcription activation ability of bHLH IVc. Additionally, PYE directly negatively regulates its own transcription. This study provides insights into the complicated Fe deficiency response signaling pathway and enhances the understanding of PYE functions.Short summaryPYE is a negative regulator of Fe homeostasis; however, it was still unclear how PYE integrates the Fe deficiency response signaling. Our study shows that conditional nuclear localization of PYE is crucial for Fe homeostasis. PYE not only negatively regulates FIT-dependent Fe uptake genes by directly targeting bHLH Ib genes, but also negatively regulates its own expression.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3