Abstract
Adipose tissue, via sympathetic and sensory neurons, communicates with the central nervous system (CNS) to mediate energy homeostasis. In contrast to the sympathetic nervous system, the morphology, role and regulation of the sensory nervous system in adipose tissue is poorly characterized. Taking advantage of recent progress in whole-mount three-dimensional imaging of adipose tissue, we identified a neuronal network of calcitonin gene-related protein (CGRP)-positive sensory neurons in white adipose tissue (WAT). Furthermore, we show that adipose mammalian target of rapamycin complex 2 (mTORC2), a major component of the insulin signaling pathway, mediates sensory innervation in WAT. Based on visualization of neuronal networks, mTORC2-deficient WAT displayed reduced arborization of (CGRP)-positive sensory neurons, while sympathetic neurons were unaffected. This selective loss of sensory innervation followed reduced expression of growth-associated protein 43 (GAP43) in CGRP-positive sensory neurons. Finally, we found that loss of sensory innervation in WAT correlated with systemic insulin resistance. Our findings suggest that adipose mTORC2 is necessary for sensory innervation in WAT which likely contributes to WAT-to-CNS communication.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献