The molecular organization of flat and curved caveolae indicates bendable structural units at the plasma membrane

Author:

Matthaeus Claudia,Sochacki Kem A.,Dickey Andrea,Puchkov Dmytro,Haucke Volker,Lehmann Martin,Taraska Justin W.

Abstract

AbstractCaveolae are small coated inner plasma membrane invaginations found in many cell types. Their diverse functions span from endocytosis to signaling, regulating key cellular processes including lipid uptake, pathogen entry, and membrane tension. Caveolae undergo shape changes from flat to curved. It is unclear which proteins regulate this process. To address this gap, we studied the shapes of caveolae with platinum replica electron microscopy in six common cell types. Next, we developed a correlative multi-color stimulated emission depletion (STED) fluorescence and platinum replica EM imaging (CLEM) method to image caveolae-associated proteins at caveolae of different shapes at the nanoscale. Caveolins and cavins were found at all caveolae, independent of their curvature. EHD2, a classic caveolar neck protein, was strongly detected at both curved and flat caveolae. Both pacsin2 and the regulator EHBP1 were found only at a subset of caveolae. Pacsin2 was localized primarily to areas surrounding flat caveolae, whereas EHBP1 was mostly detected at spheres. Contrary to classic models, dynamin was absent from caveolae and localized only to clathrin-coated structures. Cells lacking dynamin showed no substantial changes to caveolae, suggesting that dynamin is not directly involved in caveolae curvature. Together, we provide a mechanistic map for the molecular control of caveolae shape by eight of the major caveolae-associated coat and regulatory proteins. We propose a model where caveolins, cavins, and EHD2 assemble as a cohesive structural unit regulated by more intermittent associations with pacsin2 and EHBP1. These complexes can flatten and curve, capturing membrane to enable lipid traffic and changes to the surface area of the cell.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3