Emergence of integrated information at macro timescales in real neural recordings

Author:

Leung AORCID,Tsuchiya NORCID

Abstract

AbstractHow a system generates conscious experience remains an elusive question. One approach towards answering this is to consider the information available in the system from the perspective of the system itself. Integrated information theory (IIT) proposes a measure to capture this, integrated information (Φ). While Φ can be computed at any spatiotemporal scale, IIT posits that it be applied at the scale at which the measure is maximised. Importantly, Φ should emerge to be maximal not at the smallest spatiotemporal scale, but at some macro scale where system elements or timesteps are grouped into larger elements or timesteps. Emergence in this sense has been demonstrated in artificial binary systems, but it remains unclear whether it occurs in real neural recordings which are generally continuous and noisy. Here we first utilise a computational model to confirm that Φ becomes maximal at the temporal scales underlying its generative mechanisms. Second, we search for emergence in local field potentials from the fly brain recorded during wakefulness and anaesthesia, finding that normalised Φ (wake/anaesthesia), but not raw Φ values, peaks at 5 ms. Lastly, we extend our model to investigate why raw Φ values themselves did not peak. This work extends the application of Φ to simple artificial systems consisting of logic gates towards searching for emergence of a macro spatiotemporal scale in real neural systems.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3