Generation and Maturation of Human iPSC-derived Cardiac Organoids in Long Term Culture

Author:

Ergir Ece,La Cruz Jorge Oliver-De,Fernandes Soraia,Cassani Marco,Niro Francesco,Sousa Daniel,Vrbský Jan,Vinarský Vladimír,Perestrelo Ana Rubina,Debellis Doriana,Cavalieri Francesca,Pagliari Stefania,Redl Heinz,Ertl Peter,Forte GiancarloORCID

Abstract

ABSTRACTCardiovascular diseases remain the leading cause of death worldwide; hence there is an increasing focus on developing physiologically relevant in vitro cardiovascular tissue models suitable for studying personalized medicine and pre-clinical tests. Despite recent advances, models that reproduce both tissue complexity and maturation are still limited.We have established a scaffold-free protocol to generate multicellular, beating and self-organized human cardiac organoids (hCO) in vitro from hiPSCs that can be cultured for long term. This is achieved by differentiation of hiPSC in 2D monolayer culture towards cardiovascular lineage, followed by further aggregation on low-attachment culture dishes in 3D. The generated human cardiac organoids (hCOs) containing multiple cell types that physiologically compose the heart, gradually self-organize and beat without external stimuli for more than 50 days. We have shown that 3D hCOs display improved cardiac specification, survival and maturation as compared to standard monolayer cardiac differentiation. We also confirmed the functionality of hCOs by their response to cardioactive drugs in long term culture. Furthermore, we demonstrated that hCOs can be used to study chemotherapy-induced cardiotoxicity.This study could help to develop more physiologically-relevant cardiac tissue models, and represent a powerful platform for future translational research in cardiovascular biology.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3