Predictable and stable epimutations induced during clonal propagation with embryonic transcription factors

Author:

Wibowo Anjar TriORCID,Antunez-Sanchez JavierORCID,Dawson Alexander,Price JonathanORCID,Meehan Cathal,Wrightsman TravisORCID,Collenberg Maximillian,Bezrukov Ilja,Becker ClaudeORCID,Benhamed MoussaORCID,Weigel DetlefORCID,Gutierrez-Marcos Jose

Abstract

AbstractAlthough clonal propagation is frequently used in commercial plant breeding and plant biotechnology programs because it minimizes genetic variation, it is not uncommon to observe clonal plants with stable phenotypic changes, a phenomenon known as somaclonal variation. Several studies have shown that epigenetic modifications induced during regeneration are associated with this newly acquired phenotypic variation. However, the factors that determine the extent of somaclonal variation and the molecular changes associated with it remain poorly understood. To address this gap in our knowledge, we compared clonally propagated Arabidopsis thaliana plants derived from somatic embryogenesis using two different embryonic transcription factors-RWP-RK DOMAIN-CONTAINING 4 (RKD4) or LEAFY COTYLEDON2 (LEC2) and from two epigenetically distinct tissues. We found that both the epi(genetic) status of explant and the regeneration protocol employed play critical roles in shaping the molecular and phenotypic state of clonal plants. Phenotypic variation of regenerated plants can be largely explained by the inheritance of tissue-specific DNA methylation imprints, which are associated with specific transcriptional and metabolic changes in sexual progeny of clonal plants. Moreover, regenerants from roots were particularly affected by the inheritance of epigenetic imprints, which resulted in increased accumulation of salicylic acid in leaves and accelerated plant senescence. Collectively, our data reveal pathways for targeted manipulation of phenotypic variation in clonal plants.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3