Mouse Genomic Associations withEx VivoSensitivity to Simulated Space Radiation

Author:

Cekanaviciute EgleORCID,Tran DucORCID,Nguyen Hung,Macha Alejandra Lopez,Pariset Eloise,Langley Sasha,Babbi Giulia,Malkani Sherina,Penninckx Sébastien,Schisler Jonathan C.ORCID,Nguyen Tin,Karpen Gary H.,Costes Sylvain. V.

Abstract

AbstractExposure to ionizing radiation is considered by NASA to be a major health hazard for deep space exploration missions. Ionizing radiation sensitivity is modulated by both genomic and environmental factors. Understanding their contributions is crucial for designing experiments in model organisms, evaluating the risk of deep space (i.e. high-linear energy transfer, or LET, particle) radiation exposure in astronauts, and also selecting therapeutic irradiation regimes for cancer patients. We identified single nucleotide polymorphisms in 15 strains of mice, including 10 collaborative cross model strains and 5 founder strains, associated with spontaneous and ionizing radiation-inducedex vivoDNA damage quantified based on immunofluorescent 53BP1+nuclear foci. Statistical analysis suggested an association with pathways primarily related to cellular signaling, metabolism, tumorigenesis and nervous system damage. We observed different genomic associations in early (4 and 8 hour) responses to different LET radiation, while later (24 hour) DNA damage responses showed a stronger overlap across all LETs. Furthermore, a subset of pathways was associated with spontaneous DNA damage, suggesting 53BP1+foci as a potential biomarker for DNA integrity in mouse models. Based on our results, we suggest several mouse strains as new models to further study the impact of ionizing radiation and validate the identified genetic loci. We also highlight the importance of future humanex vivostudies to refine the association of genes and pathways with the DNA damage response to ionizing radiation and identify targets for space travel countermeasures.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3