Fluctuation-driven plasticity allows for flexible rewiring of neuronal assemblies

Author:

Devalle Federico,Roxin Alex

Abstract

AbstractSynaptic connections in neuronal circuits are modulated by pre- and post-synaptic spiking activity. Heuristic models of this process of synaptic plasticity can provide excellent fits to results from in-vitro experiments in which pre- and post-synaptic spiking is varied in a controlled fashion. However, the plasticity rules inferred from fitting such data are inevitably unstable, in that given constant pre- and post-synaptic activity the synapse will either fully potentiate or depress. This instability can be held in check by adding additional mechanisms, such as homeostasis. Here we consider an alternative scenario in which the plasticity rule itself is stable. When this is the case, net potentiation or depression only occur when pre- and post-synaptic activity vary in time, e.g. when driven by time-varying inputs. We study how the features of such inputs shape the recurrent synaptic connections in models of neuronal circuits. In the case of oscillatory inputs, the resulting structure is strongly affected by the phase relationship between drive to different neurons. In large networks, distributed phases tend to lead to hierarchical clustering. Our results may be of relevance for understanding the effect of sensory-driven inputs, which are by nature time-varying, on synaptic plasticity, and hence on learning and memory.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3