Profiling Mouse Brown and White Adipocytes to Identify Metabolically Relevant Small ORFs and Functional Microproteins

Author:

Martinez Thomas F.ORCID,Lyons-Abbott Sally,Bookout Angie L.,Donaldson CynthiaORCID,Vaughan Joan M.,Lau Calvin,Abramov Ariel,Baquero Arian F.,Baquero Karalee,Friedrich Dave,Huard Justin,Davis Ray,Kim Bong,Koch Ty,Mercer Aaron J.ORCID,Misquith Ayesha,Murray Sara A.,Perry Sakara,Pino Lindsay K.ORCID,Sanford Christina,Simon Alex,Zhang Yu,Zipp Garrett,Shokhirev Maxim N.ORCID,Whittle Andrew J.,Searle Brian C.ORCID,MacCoss Michael J.ORCID,Saghatelian Alan,Barnes Christopher A.ORCID

Abstract

SUMMARYThe absence of thousands of recently annotated small open reading frame (smORF)-encoded peptides and small proteins (microproteins) from databases has precluded their analysis in metabolism and metabolic disease. Given the outsized importance of small proteins and peptides such as insulin, leptin, amylin, glucagon, and glucagon-like peptide-1 (GLP-1) in metabolism, microproteins are a potentially rich source of uncharacterized metabolic regulators. Here, we annotate smORFs in primary differentiated brown, white, and beige mouse adipose cells. Ribosome profiling (Ribo-Seq) detected a total of 3,877 unannotated smORFs. Analysis of RNA-Seq datasets revealed diet-regulated smORF expression in adipose tissues, and validated the adipose translation of the feeding-neuron marker gene Gm8773. Gm8773 encodes the mouse homolog of FAM237B, a neurosecretory protein that stimulates food intake and promotes weight gain in chickens. Testing of recombinant mFAM237B produced similar orexigenic activity in mice further supporting a role for FAM237B as a metabolic regulator and potentially part of the brain-adipose axis. Furthermore, we demonstrated that data independent acquisition mass spectrometry (DIA-MS) proteomics can provide a sensitive, flexible, and quantitative platform for identifying microproteins by mass spectrometry. Using this system led to the detection of 58 microproteins from cell culture and an additional 33 from mouse plasma. The proteomics data established the anti-inflammatory microprotein AW112010 as a circulating factor, and found that plasma levels of a microprotein translated from a FRS2 uORF is elevated in older obese mice. Together, the data highlight the value of this database in examining understudied smORFs and microproteins in metabolic research and identifying additional regulators of metabolism.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3