Testing microbiome associations with censored survival outcomes at both the community and individual taxon levels

Author:

Hu Yingtian,Li Yunxiao,Satten Glen A.,Hu Yi-Juan

Abstract

AbstractBackgroundFinding microbiome associations with possibly censored survival times is an important problem, especially as specific taxa could serve as biomarkers for disease prognosis or as targets for therapeutic interventions. The two existing methods for survival outcomes, MiRKAT-S and OMiSA, are restricted to testing associations at the community level and do not provide results at the individual taxon level. An ad hoc approach testing each taxon with a survival outcome using the Cox proportional hazard model may not perform well in the microbiome setting with sparse count data and small sample sizes.MethodsWe have previously developed the linear decomposition model (LDM) that unifies community-level and taxon-level tests into one framework. Here we extend the LDM to test survival outcomes. We propose to use the Martingale residuals or the deviance residuals obtained from the Cox model as continuous covariates in the LDM. We further construct tests that combine the results of analyzing each set of residuals separately. Finally, we extend PERMANOVA, the most commonly used distance-based method for testing community-level hypotheses, to handle survival outcomes in a similar manner.ResultsUsing simulated data, we showed that the LDM-based tests preserved the false discovery rate for testing individual taxa and had good sensitivity. The LDM-based community-level tests and PERMANOVA-based tests had comparable or better power than MiRKAT-S and OMiSA. An analysis of data on the association of the gut microbiome and the time to acute graft-versus-host disease revealed several dozen associated taxa that would not have been achievable by any community-level test, as well as improved community-level tests by the LDM and PERMANOVA over those obtained using MiRKAT-S and OMiSA.Availability and ImplementationThe new methods described here have been added to our R package LDM, which is available on GitHub at https://github.com/yijuanhu/LDM.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3