Sequential epiretinal stimulation improves discrimination in simple shape discrimination tasks only

Author:

Christie BreanneORCID,Sadeghi Roksana,Kartha ArathyORCID,Caspi AviORCID,Tenore Francesco V.ORCID,Klatzky Roberta L.ORCID,Dagnelie GislinORCID,Billings SethORCID

Abstract

AbstractObjectiveElectrical stimulation of the retina can elicit flashes of light called phosphenes, which can be used to restore rudimentary vision for people with blindness. Functional sight requires stimulation of multiple electrodes to create patterned vision, but phosphenes tend to merge together in an uninterpretable way. Sequentially stimulating electrodes in human visual cortex has recently demonstrated that shapes could be “drawn” with better perceptual resolution relative to simultaneous stimulation. The goal of this study was to evaluate if sequential stimulation would also form clearer shapes when the retina is the neural target.ApproachTwo human participants with retinitis pigmentosa who had Argus® II retinal prostheses participated in this study. We evaluated different temporal parameters for sequential stimulation in phosphene shape mapping and forced-choice discrimination tasks. For the discrimination tasks, performance was compared between stimulating electrodes simultaneously versus sequentially.Main resultsPhosphenes elicited by different electrodes were reported as vastly different shapes. Sequential electrode stimulation outperformed simultaneous stimulation in simple discrimination tasks, in which shapes were created by stimulating 3-4 electrodes, but not in more complex discrimination tasks involving 5+ electrodes. For sequential stimulation, the optimal pulse train duration was 200 ms when stimulating at 20 Hz and the optimal gap interval was tied between 0 and 50 ms. Efficacy of sequential stimulation also depended strongly on selecting electrodes that elicited phosphenes with similar shapes and sizes.SignificanceAn epiretinal prosthesis can produce coherent simple shapes with a sequential stimulation paradigm, which can be used as rudimentary visual feedback. However, success in creating more complex shapes, such as letters of the alphabet, is still limited. Sequential stimulation may be most beneficial for epiretinal prostheses in simple tasks, such as basic navigation, rather than complex tasks such as object identification.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3