Treatment response prediction: Is model selection unreliable?

Author:

Augustin DavidORCID,Wang Ken,Walz Antje-Christine,Lambert Ben,Clerx Michael,Robinson Martin,Gavaghan David

Abstract

AbstractQuantitative modelling has become an essential part of the drug development pipeline. In particular, pharmacokinetic and pharmacodynamic models are used to predict treatment responses in order to optimise clinical trials and assess the safety and efficacy of dosing regimens across patients. It is therefore crucial that treatment response predictions are reliable. However, the data available to fit models are often limited, which can leave considerable uncertainty about the best model to use. Common practice is to select the model that is most consistent with the observed data based on the Akaike information criterion (AIC). Another popular approach is to average the predictions across the subset of models consistent with the data. In this article, we argue that both approaches can lead to unreliable predictions, as treatment responses typically display nonlinear dynamics, so models can be consistent with the observed dynamics, whilst predicting incorrect treatment responses. This is especially the case when predicting treatment responses for either times or dosing regimens that go beyond the observed dynamics. Across a range of experiments on both real laboratory data and synthetically derived data onNeisseria gonorrhoeaeresponse to ciprofloxacin, we show that probabilistic averaging of models results in more reliable treatment response predictions.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3