Gene cluster conservation identifies melanin and perylenequinone biosynthesis pathways in multiple plant pathogenic fungi

Author:

Ebert Malaika K.ORCID,Spanner Rebecca E.ORCID,Jonge Ronnie deORCID,Smith David J.,Holthusen Jason,Secor Gary A.,Thomma Bart P.H.J.ORCID,Bolton Melvin D.ORCID

Abstract

SummaryPerylenequinones are a family of structurally related polyketide fungal toxins with nearly universal toxicity. These photosensitizing compounds absorb light energy which enables them to generate reactive oxygen species that damage host cells. This potent mechanism serves as an effective weapon for plant pathogens in disease establishment. The sugar beet pathogenCercospora beticolasecretes the perylenequinone cercosporin during infection. We have shown recently that the cercosporin toxin biosynthesis(CTB)gene cluster is present in several other phytopathogenic fungi, prompting the search for biosynthetic gene clusters (BGCs) of structurally similar perylenequinones in other fungi. Here, we report the identification of the elsinochrome and phleichrome BGCs ofElsinoё fawcettiiandCladosporium phlei,respectively, based on gene cluster conservation with theCTBand hypocrellin BGCs. Furthermore, we show that previously reported BGCs for elsinochrome and phleichrome are involved in melanin production. Phylogenetic analysis of the corresponding melanin polyketide synthases (PKSs) and alignment of melanin BGCs revealed high conservation between the established and newly identifiedC. beticola, E. fawcettii,andC. phleimelanin BGCs. Mutagenesis of the identified perylenequinone and melanin PKSs inC. beticolaandE. fawcettiicoupled with mass spectrometric metabolite analyses confirmed their roles in toxin and melanin production.Originality and significance statementGenes involved in secondary metabolite (SM) production are often clustered together to form biosynthetic pathways. These pathways frequently have highly conserved keystone enzymes which can complicate allocation of a biosynthetic gene cluster (BGC) to the cognate SM. In our study, we utilized a combination of comparative genomics, phylogenetic analyses and biochemical approaches to reliably identify BGCs for perylenequinone toxins and DHN-melanin in multiple plant pathogenic fungi. Furthermore, we show that earlier studies that aimed to identify these perylenequinone pathways were misdirected and actually reported DHN-melanin biosynthetic pathways. Our study outlines a reliable approach to successfully identify fungal SM pathways.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3