Accelerating the Calculation of Protein-Ligand Binding Free Energy and Residence Times using Dynamically Optimized Collective Variables

Author:

Brotzakis Z. Faidon,Limongelli Vittorio,Parrinello Michele

Abstract

AbstractElucidation of the ligand/protein binding interaction is of paramount relevance in pharmacology to increase the success rate of drug design. To this end a number of computational methods have been proposed, however all of them suffer from limitations since the ligand binding/unbinding transitions to the molecular target involve many slow degrees of freedom that hamper a full characterization of the binding process. Being able to express this transition in simple and general slow degrees of freedom, would give a distinctive advantage, since it would require minimal knowledge of the system under study, while in turn it would elucidate its physics and accelerate the convergence speed of enhanced sampling methods relying on collective variables. In this study we pursuit this goal by combining for the first time Variation Approach to Conformational dynamics with Funnel-Metadynamics. In so doing, we predict for the benzamidine/trypsin system the ligand binding mode, and we accurately compute the absolute protein-ligand binding free energy and unbinding rate at unprecedented low computational cost. Finally, our simulation protocol reveals the energetics and structural details of the ligand binding mechanism and shows that water and binding pocket solvation/desolvation are the dominant slow degrees of freedom.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3