Abstract
AbstractBrassica juncea is used as a condiment, as vegetables and as an oilseed crop, especially in semiarid areas. In the present study, we constructed a genetic map using one recombinant inbred line (RIL) of B. juncea. A total of 304 ILP (intron length polymorphism) markers were mapped to 18 linkage groups designated LG01-LG18 in B. juncea. The constructed map covered a total genetic length of 1671.13 cM with an average marker interval of 5.50 cM. The QTLs for 2-propenyl glucosinolates (GSLs) colocalized with the QTLs for 3-butenyl GSLs between At1g26180 and BnapPIP1580 on LG08 in the field experiments of 2016 and 2017. These QTLs accounted for an average of 42.3% and 42.6% phenotypic variation for 2-propenyl and 3-butenyl GSLs, respectively. Furthermore, the Illumina RNA-sequencing technique was used to excavate the genes responsible for the synthesis of GSLs in the siliques of the parental lines of the RIL mapping population, because the bulk of the seed GSLs might originate from the siliques. Comparative analysis and annotation by gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) revealed that 324 genes were involved in GSL metabolism, among which only 24 transcripts were differentially expressed genes (DEGs). Among those DEGs, 15 genes were involved in the biosynthesis and transport of aliphatic GSLs, and their expression patterns were further validated by qRT-PCR analysis. These RNA-Seq results will be helpful for further fine mapping, gene cloning and genetic mechanisms of 2-propenyl and 3-butenyl GSLs in B. juncea.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献