Fungal Feature Tracker (FFT): A tool for quantitatively characterizing the morphology and growth of filamentous fungi

Author:

de Ulzurrun Guillermo Vidal-Diez,Huang Tsung-Yu,Chang Ching-Wen,Lin Hung-Che,Hsueh Yen-Ping

Abstract

AbstractFilamentous fungi are ubiquitous in nature and serve as important biological models in various scientific fields including genetics, cell biology, ecology, evolution, and chemistry. A significant obstacle in studying filamentous fungi is the lack of tools for characterizing their growth and morphology in an efficient and quantitative manner. Consequently, assessments of the growth of filamentous fungi are often subjective and imprecise. In order to remedy this problem, we developed Fungal Feature Tracker (FFT), a user-friendly software comprised of different image analysis tools to automatically quantify different fungal characteristics, such as spore number, spore morphology, and measurements of total length, number of hyphal tips and the area covered by the mycelium. In addition, FFT can recognize and quantify specialized structures such as the traps generated by nematode-trapping fungi, which could be tuned to quantify other distinctive fungal structures in different fungi. We present a detailed characterization and comparison of a few fungal species as a case study to demonstrate the capabilities and potential of our software. Using FFT, we were able to quantify various features at strain and species level, such as mycelial growth over time and the length and width of spores, which would be difficult to track using classical approaches. In summary, FFT is a powerful tool that enables quantitative measurements of fungal features and growth, allowing objective and precise characterization of fungal phenotypes.Author SummaryOne of the main obstacles to study filamentous fungi is the lack of tools for characterizing fungal phenotypes in an efficient and quantitative manner. Assessment of cell growth and numbers rely on tedious manual techniques that often result in subjective and imprecise measurements. In response to those limitations, we developed Fungal Feature Tracker (FFT), a user-friendly software that allows researchers to characterize different phenotypic features of filamentous fungi such as sporulation, spore morphology and mycelial growth. In addition, FFT can recognize and quantify other fungal structures including the fungal traps developed by nematode-trapping fungi. In order to show the capabilities and potential of our software, we conducted a detailed characterization and comparison of different fungal species. Our comparison relies on a series of experimental set-ups using standard and easily accessible equipment to ensure reproducibility in other laboratories. In summary, FFT is an easy to use and powerful tool that can quantitatively characterize fungal morphology, cell number and quantitatively measures the filamentous growth, which will allow advance our understanding of the growth and biology of filamentous fungi.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3