Activation of S-phase-promoting CDKs in late G1 defines a "point of no return" after which Cdc6 synthesis cannot promote DNA replication in yeast.

Author:

Piatti S,Böhm T,Cocker J H,Diffley J F,Nasmyth K

Abstract

In eukaryotic cells, DNA replication is confined to a discrete period of the cell cycle and does not usually recur until after anaphase. In the budding yeast Saccharomyces cerevisiae, assembly of pre-replication complexes (pre-RCs) at future origins as cells exit mitosis (or later during G1 is necessary for subsequent initiation of DNA replication triggered by activation in late G1 of Cdc28/Cdk1 kinases associated with B-type cyclins Clb1-Clb6. The absence of pre-RCs during G2 and M phases could explain why origins of DNA replication fire only once during the cell cycle, even though S-phase-promoting Cdks remain active from the beginning of S phase through the end of M phase. Formation of pre-RCs and their maintenance during G1 depend on the synthesis and activity of an unstable protein encoded by CDC6. We find that Cdc6 synthesis can only promote DNA replication in a restricted window of the cell cycle: between destruction of Clbs after anaphase and activation of Clb5/ and Clb6/Cdk1 in late G1. The latter corresponds to a "point of no return," after which Cdc6 synthesis can no longer promote DNA replication. Cdc6 protein can be made throughout the cell cycle and, in certain circumstances, can accumulate within the nuclei of G2 and M phase cells without inducing re-replication. Thus, control over Cdc6 degradation and/or nuclear localization is not crucial for preventing origin re-firing. Our data are consistent with the notion that cells can no longer incorporate de novo synthesized Cdc6 into pre-RCs once C1b/Cdk1 kinases have been activated. We show that Cdc6p associates with Clb/Cdk1 kinases from late G1 until late anaphase, which might be important for inhibiting pre-RC assembly during S, G2, and M phases. Inhibition of pre-RC assembly by the same kinases that trigger initiation explains how origins are prevented from re-firing until Clb kinases are destroyed after anaphase.

Publisher

Cold Spring Harbor Laboratory

Subject

Developmental Biology,Genetics

Cited by 267 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3