Oskar protein interaction with Vasa represents an essential step in polar granule assembly.

Author:

Breitwieser W,Markussen F H,Horstmann H,Ephrussi A

Abstract

The posterior pole plasm of the Drosophila egg contains the determinants of abdominal and germ-cell fates of the embryo. Pole plasm assembly is induced by oskar RNA localized to the posterior pole of the oocyte. Genetics has revealed three additional genes, staufen, vasa, and tudor, that are also essential for pole plasm formation. Staufen protein is required for both oskar RNA localization and translation. Vasa and Tudor are localized dependent on Oskar protein and are required to accumulate Oskar protein stably at the posterior pole. We have explored interactions between these gene products at the molecular level and find that Oskar interacts directly with Vasa and Staufen, in a yeast two-hybrid assay. These interactions also occur in vitro and are affected by mutations in Oskar that abolish pole plasm formation in vivo. Finally, we show that in the pole plasm, Oskar protein, like Vasa and Tudor, is a component of polar granules, the germ-line-specific RNP structures. These results suggest that the Oskar-Vasa interaction constitutes an initial step in polar granule assembly. In addition, we discuss the possible biological role of the Oskar-Staufen interaction.

Publisher

Cold Spring Harbor Laboratory

Subject

Developmental Biology,Genetics

Reference48 articles.

1. Ausubel, F.M., R. Brent, R.E. Kingston, D.D. Moore, J.G. Seidman, J.A. Smith, and K. Struhl, ed. 1987–1993. Current Protocols in Molecular Biology. Wiley & Sons, New York, NY.

2. Distribution of tudor protein in the Drosophila embryo suggests separation of functions based on sites of localization.;Development,1993

3. A bacterial repressor protein or a yeast transcriptional terminator can block upstream activation of a yeast gene

4. Green Fluorescent Protein as a Marker for Gene Expression

5. Dynamic Hsp83 RNA localization during Drosophila oogenesis and embryogenesis.;Mol. Cell. Biol.,1993

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3