p53 levels, functional domains, and DNA damage determine the extent of the apoptotic response of tumor cells.

Author:

Chen X,Ko L J,Jayaraman L,Prives C

Abstract

It is well established that induction of the p53 tumor suppressor protein in cells can lead to either cell cycle arrest or apoptosis. To further understand features of p53 that contribute to these cell responses several p53-null Saos2 and H1299 cell lines were generated that express wild-type or mutant forms of p53, or the cyclin-dependent kinase inhibitor p21/WAF1, under a tetracycline-regulated promoter. Our results show that the cellular level of p53 can dictate the response of the cell such that lower levels of p53 result in arrest whereas higher levels result in apoptosis; nevertheless, DNA damage can heighten the apoptotic response to p53 without altering the protein level of p53 in cells. We also demonstrate that arrest and apoptosis are two genetically separable functions of p53 because a transcriptionally incompetent p53 can induce apoptosis but not arrest, whereas induction of p21/WAF1, which is a major transcriptional target of p53, can induce arrest but not apoptosis. Finally, we show that a full apoptotic response to p53 requires both its amino and carboxyl terminus, and our data suggest that there is synergism between transcription-dependent and -independent functions of p53 in apoptosis. Thus, there are multiple independent cellular responses to p53 that together may account for the extraordinarily high frequency of p53 mutations in diverse types of human tumors. The implications of these results are discussed and a model is proposed.

Publisher

Cold Spring Harbor Laboratory

Subject

Developmental Biology,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3