Why do eukaryotic proteins contain more intrinsically disordered regions?

Author:

Basile Walter,Salvatore Marco,Bassot Claudio,Elofsson ArneORCID

Abstract

AbstractIntrinsic disorder is much more abundant in eukaryotic than in prokaryotic proteins. However, the reason behind this is unclear. It has been proposed that the disordered regions are functionally important for regulation in eukaryotes, but it has also been proposed that the difference is a result of lower selective pressure in eukaryotes. Almost all studies intrinsic disorder is predicted from the amino acid sequence of a protein. Therefore, there should exist an underlying difference in the amino acid distributions between eukaryotic and prokaryotic proteins causing the predicted difference in intrinsic disorder. To obtain a better understanding of why eukaryotic proteins contain more intrinsically disordered regions we compare proteins from complete eukaryotic and prokaryotic proteomes.Here, we show that the difference in intrinsic disorder origin from differences in the linker regions. Eukaryotic proteins have more extended linker regions and, in particular, the eukaryotic linker regions are more disordered. The average eukaryotic protein is about 500 residues long; it contains 250 residues in linker regions, of which 80 are disordered. In comparison, prokaryotic proteins are about 350 residues long and only have 100-110 residues in linker regions, and less than 10 of these are intrinsically disordered.Further, we show that there is no systematic increase in the frequency of disorder-promoting residues in eukaryotic linker regions. Instead, the difference in frequency of only three amino acids seems to lie behind the difference. The most significant difference is that eukaryotic linkers contain about 9% serine, while prokaryotic linkers have roughly 6.5%. Eukaryotic linkers also contain about 2% more proline and 2-3% fewer isoleucine residues. The reason why primarily these amino acids vary in frequency is not apparent, but it cannot be excluded that the difference is serine is related to the increased need for regulation through phosphorylation and that the proline difference is related to increase of eukaryotic specific repeats.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3