Abstract
AbstractThe ability of Mycobacterium tuberculosis to form serpentine cords is intrinsically related to its virulence, but specifically how M. tuberculosis cording contributes to pathogenesis remains obscure. We show that several M. tuberculosis clinical isolates form intracellular cords in primary human lymphatic endothelial cells (hLEC) in vitro and also in the lymph nodes of patients with tuberculosis. We identified via RNA-seq a transcriptional programme in hLEC that activates cellular pro-survival and cytosolic surveillance of intracellular pathogens pathways. Consistent with this, cytosolic access of hLEC is required for intracellular M. tuberculosis cording; and cord formation is dependent on the M. tuberculosis ESX-1 type VII secretion system and the mycobacterial lipid PDIM. Finally, we show that M. tuberculosis cording is a novel size-dependent mechanism used by the pathogen to evade xenophagy in the cytosol of endothelial cells. These results provide a mechanism that explains the long-standing association between M. tuberculosis cording and virulence.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献