Interfering with MIF-CD74 signalling on macrophages and dendritic cells with a peptide-based approach restores the immune response against metastatic melanoma

Author:

Figueiredo Carlos R.,Azevedo Ricardo A.,Mousdell Sasha,Resende-Lara Pedro T.,Ireland Lucy,Santos Almudena,Girola Natalia,Cunha Rodrigo L.O.R.,Schmid Michael C.,Polonelli Luciano,Travassos Luiz R.,Mielgo AinhoaORCID

Abstract

ABSTRACTMounting an effective immune response against cancer requires the activation of innate and adaptive immune cells. Metastatic melanoma is the most aggressive form of skin cancer. Immunotherapies that boost the activity of effector T cells have shown a remarkable success in melanoma treatment. Patients, however, can develop resistance to such therapies by mechanisms that include the establishment of an immune suppressive tumour microenvironment. Understanding how metastatic melanoma cells suppress the immune system is vital to develop effective immunotherapies against this disease. In this study, we find that the innate immune cells, macrophages and dendritic cells are suppressed in metastatic melanoma. The Ig-CDR-based peptide C36L1 is able to restore macrophages and dendritic cells’ immunogenic functions and to inhibit metastatic growth in vivo. Mechanistically, we found that C36L1 interferes with the MIF-CD74 tumour-innate immune cells immunosuppressive signalling pathway and thereby restores an effective anti-tumour immune response. C36L1 directly binds to CD74 on macrophages and dendritic cells, disturbing CD74 structural dynamics and inhibiting MIF signalling through CD74. Our findings suggest that interfering with MIF-CD74 immunosuppressive signalling in macrophages and dendritic cells using peptide-based immunotherapy can restore the anti-tumour immune response in metastatic melanoma. Our study provides the rationale for further development of peptide-based therapies to restore the anti-tumour immune response.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3