Novel Quorum Sensing Activity in East Antarctic Soil Bacteria

Author:

Wong Sin Yin,Charlesworth James C.,Benaud NicoleORCID,Burns Brendan P.,Ferrari Belinda C.

Abstract

ABSTRACTAntarctica, being the coldest, driest and windiest continent on Earth, represents the most extreme environment a living organism can thrive in. Under constant exposure to harsh environmental threats, terrestrial Antarctica remains home to a great diversity of microorganisms, indicating that the soil bacteria must have adapted a range of survival strategies that require cell-to-cell communication. Survival strategies include secondary metabolite production, biofilm formation, bioluminescence, symbiosis, conjugation, sporulation and motility, all of which are often regulated by quorum sensing (QS), a type of bacterial communication. Up to now, such mechanisms have not been explored in terrestrial Antarctica. Here, for the first time, LuxI/LuxR-based quorum sensing (QS) activity was delineated in soil bacterial isolates recovered from Adams Flat, in the Vestfold Hills region of East Antarctica. Interestingly, we identified the production of potential homoserine lactones (HSLs) ranging from medium to long chain length in 19 bacterial species using three biosensors, namelyAgrobacterium tumefaciensNTL4,Chromobacterium violaceumCV026 andEscherichia coliMT102, in conjunction with thin layer chromatography (TLC). The majority of detectable HSLs were from gram-positive microorganisms not previously known to produce HSLs. This discovery further expands our understand of the microbial community capable of this type of communication, as well as providing insights into physiological adaptations of microorganisms that allow them to survive in the harsh Antarctic environment.IMPORTANCEQuorum sensing, a type of bacterial communication, is widely known to regulate many processes including those that confer survival advantage. However, little is known about communication by bacteria thriving within Antarctic soils. Employing a combination of bacteria biosensors, analytical techniques, and genome mining, we found a variety of Antarctic soil bacteria speaking a common language, via the LuxI/LuxR-based quorum sensing, thus potentially supporting survival in a mixed microbial community. This is the first report of quorum sensing activity in Antarctic soils and has provided a platform for studying physiological adaptations of microorganisms that allow them to not just survive but thrive in the harsh Antarctic environment.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3