Driver pattern identification over the gene co-expression of drug response in ovarian cancer by integrating high throughput genomics data

Author:

Lu Xinguo,Lu Jibo,Liao Bo,Li Keqin

Abstract

The multiple types of high throughput genomics data create a potential opportunity to identify driver pattern in ovarian cancer, which will acquire some novel and clinical biomarkers for appropriate diagnosis and treatment to cancer patients. However, it is a great challenging work to integrate omics data, including somatic mutations, Copy Number Variations (CNVs) and gene expression profiles, to distinguish interactions and regulations which are hidden in drug response dataset of ovarian cancer. To distinguish the candidate driver genes and the corresponding driving pattern for resistant and sensitive tumor from the heterogeneous data, we combined gene co-expression modules and mutation modulators and proposed the identification driver patterns method. Firstly, co-expression network analysis is applied to explore gene modules for gene expression profiles via weighted correlation network analysis (WGCNA). Secondly, mutation matrix is generated by integrating the CNVs and somatic mutations, and a mutation network is constructed from this mutation matrix. The candidate modulators are selected from the significant genes by clustering the vertex of the mutation network. At last, regression tree model is utilized for module networks learning in which the achieved gene modules and candidate modulators are trained for the driving pattern identification and modulator regulatory exploring. Many of the candidate modulators identified are known to be involved in biological meaningful processes associated with ovarian cancer, which can be regard as potential driver genes, such as CCL11, CCL16, CCL18, CCL23, CCL8, CCL5, APOB, BRCA1, SLC18A1, FGF22, GADD45B, GNA15, GNA11 and so on, which can help to facilitate the discovery of biomarkers, molecular diagnostics, and drug discovery.

Publisher

Cold Spring Harbor Laboratory

Reference55 articles.

1. Advances in computational approaches for prioritizing driver mutations and significantly mutated genes in cancer genomes;Briefings in Bioinformatics,2015

2. Cancer Genome Landscapes

3. Predicting biomarkers for ovarian cancer using gene-expression microarrays

4. Identifying cancer driver genes in tumor genome sequencing studies;Bioinformatics,2010

5. Only three driver gene mutations are required for the development of lung and colorectal cancers;Proceedings of the National Academy of Sciences,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3