The RNA polymerase clamp interconverts dynamically among three states and is stabilized in a partly closed state by ppGpp

Author:

Duchi Diego,Mazumder Abhishek,Malinen Anssi M.,Ebright Richard H.ORCID,Kapanidis Achillefs N.

Abstract

ABSTRACTRNA polymerase (RNAP) contains a mobile structural module, the “clamp,” that forms one wall of the RNAP active-center cleft and that has been linked to crucial aspects of the transcription cycle, including loading of promoter DNA into the RNAP active-center cleft, unwinding of promoter DNA, transcription elongation complex stability, transcription pausing, and transcription termination. Crystal structures and single-molecule FRET studies establish that the clamp can adopt open and closed conformational states; however, the occurrence, pathway, and kinetics of transitions between clamp states have been unclear. Using single-molecule FRET (smFRET) on surface-immobilized RNAP molecules, we show that the clamp in RNAP holoenzyme exists in three distinct conformational states: the previously defined open state, the previously defined closed state, and a previously undefined partly closed state. smFRET time-traces show dynamic transitions between open, partly closed, and closed states on the 0.1-1 second time-scale. Similar analyses of transcription initiation complexes confirm that the RNAP clamp is closed in the catalytically competent transcription initiation complex and in initial transcribing complexes (RPITC), including paused initial transcribing complexes, and show that, in these complexes, in contrast to in RNAP holoenzyme, the clamp does not interconvert between the closed state and other states. The stringent-response alarmone ppGpp selectively stabilizes the partly-closed-clamp state, inhibiting interconversion between the partly closed state and the open state. The methods of this report should allow elucidation of clamp conformation and dynamics during all phases of transcription.SIGNIFICANCE STATEMENTThe clamp forms a pincer of the RNA polymerase “crab-claw” structure, and adopts many conformations with poorly understood function and dynamics. By measuring distances within single surface-attached molecules, we observe directly the motions of the clamp and show that it adopts an open, a closed, and a partly closed state; the last state is stabilized by a sensor of bacterial starvation, linking the clamp conformation to the mechanisms used by bacteria to counteract stress. We also show that the clamp remains closed in many transcription steps, as well as in the presence of a specific antibiotic. Our approach can monitor clamp motions throughout transcription and offers insight on how antibiotics can stop pathogens by blocking their RNA polymerase movements.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3