Motion Displaces Population Receptive Fields in the Direction Opposite to Motion

Author:

Schneider MarianORCID,Marquardt IngoORCID,Sengupta ShubharthiORCID,De Martino FedericoORCID,Goebel RainerORCID

Abstract

ABSTRACTMotion signals can bias the perceived position of visual stimuli. While the apparent position of a stimulus is biased in the direction of motion, electro-physiological studies have shown that the receptive field (RF) of neurons is shifted in the direction opposite to motion, at least in cats and macaque monkeys. In humans, it remains unclear how motion signals affect population RF (pRF) estimates. We addressed this question using psychophysical measurements and functional magnetic resonance imaging (fMRI) at 7 Tesla. We systematically varied two factors: the motion direction of the carrier pattern (inward, outward and flicker motion) and the contrast of the mapping stimulus (low and high stimulus contrast). We observed that while physical positions were identical across all conditions, presence of low-contrast motion, but not high-contrast motion, shifted perceived stimulus position in the direction of motion. Correspondingly, we found that pRF estimates in early visual cortex were shifted against the direction of motion for low-contrast stimuli but not for high stimulus contrast. We offer an explanation in form of a model for why apertures are perceptually shifted in the direction of motion even though pRFs shift in the opposite direction.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3