Molecular determinants of metazoan tricRNA biogenesis

Author:

Schmidt Casey A.,Giusto Joseph D.,Gregory Matera A.

Abstract

ABSTRACTMature tRNAs are generated by multiple post-transcriptional processing steps, which can include intron removal. Recently, our laboratory discovered a new class of metazoan circular RNAs formed by ligation of excised tRNA introns; we termed these molecules tRNA intronic circular (tric)RNAs. To investigate the mechanism of tricRNA biogenesis, we generated constructs that replace the native introns of two Drosophila tRNA genes with the Broccoli fluorescent RNA aptamer. Using these reporters, we identified cis-acting elements required for tricRNA formation in both human and fly cells. We observed that disrupting the conserved anticodon-intron base pair dramatically reduces tricRNA levels. Although the integrity of this base pair is necessary for proper splicing, it is not sufficient. Furthermore, we found that strengthening weak base pairs in the pre-tRNA also impairs tricRNA production. We also used the reporters to identify trans-acting tricRNA processing factors. We found that several known tRNA processing factors, such as RtcB ligase and components of the TSEN endonuclease complex, are involved in tricRNA biogenesis. Depletion of these factors inhibits tRNA intron circularization. Furthermore, we observed that depletion of Clipper endonuclease results in increased tricRNA levels. In summary, our work characterizes the major players in Drosophila tricRNA biogenesis.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3