Deep Sequencing: Intra-terrestrial metagenomics illustrates the potential of off-grid Nanopore DNA sequencing

Author:

Edwards Arwyn,Soares André,Rassner Sara M.E.,Green Paul,Félix João,Mitchell Andrew C.

Abstract

AbstractGenetic and genomic analysis of nucleic acids from environmental samples has helped transform our perception of the Earth’s subsurface as a major reservoir of microbial novelty. Many of the microbial taxa living in the subsurface are under-represented in culture-dependent investigations. In this regard, metagenomic analyses of subsurface environments exemplify both the utility of metagenomics and its power to explore microbial life in some of the most extreme and inaccessible environments on Earth. Hitherto, the transfer of microbial samples to home laboratories for DNA sequencing and bioinformatics is the standard operating procedure for exploring microbial diversity. This approach incurs logistical challenges and delays the characterization of microbial biodiversity. For selected applications, increased portability and agility in metagenomic analysis is therefore desirable. Here, we describe the implementation of sample extraction, metagenomic library preparation, nanopore DNA sequencing and taxonomic classification using a portable, battery-powered, suite of off-the-shelf tools (the “MetageNomad”) to sequence ochreous sediment microbiota while within the South Wales Coalfield. While our analyses were frustrated by short read lengths and a limited yield of DNA, within the assignable reads, Proteobacterial (α-, β-, γ-Proteobacteria) taxa dominated, followed by members of Actinobacteria, Firmicutes and Bacteroidetes, all of which have previously been identified in coals. Further to this, the fungal genus Candida was detected, as well as a methanogenic archaeal taxon. To the best of our knowledge, this application of the MetageNomad represents an initial effort to conduct metagenomics within the subsurface, and stimulates further developments to take metagenomics off the beaten track.

Publisher

Cold Spring Harbor Laboratory

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3