Separating spandrels from phenotypic targets of selection in adaptive molecular evolution

Author:

Springer Stevan A.,Manhart MichaelORCID,Morozov Alexandre V.

Abstract

AbstractThere are many examples of adaptive molecular evolution in natural populations, but there is no existing method to verify which phenotypic changes were directly targeted by selection. The problem is that correlations between traits make it difficult to distinguish between direct and indirect selection. A phenotype is a direct target of selection when that trait in particular was shaped by selection to better perform a function. An indirect target of selection, also known as an evolutionary spandrel, is a phenotype that changes only because it is correlated with another trait under direct selection. Studies that mutate genes and examine the phenotypic consequences are increasingly common, and these experiments could estimate the mutational accessibility of the phenotypic changes that arise during an instance of adaptive molecular evolution. Under indirect selection, we expect phenotypes to evolve toward states that are more accessible by mutation. Deviation from this null expectation (evolution toward a phenotypic state rarely produced by mutation) would be compelling evidence of adaptation, and could be used to distinguish direct selection from indirect selection on correlated traits. To be practical, this molecular test of adaptation requires phenotypic differences that are caused by changes in a small number of genes. These kinds of genetically simple traits have been observed in many empirical studies of adaptive evolution. Here we describe how to use mutational accessibility to separate spandrels from direct targets of selection and thus verify adaptive hypotheses for phenotypes that evolve by adaptive molecular changes at one or a few genes.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3