Author:
Teather Lisa A.,Packard Mark G.,Bazan Nicolas G.
Abstract
Evidence indicates that prostanoids, such as prostaglandins, play a regulatory role in several forms of neural plasticity, including long-term potentiation, a cellular model for certain forms of learning and memory. In these experiments, the significance of the COX isoforms cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) in post-training memory processes was assessed. Adult male Long-Evans rats underwent an eight-trial (30-sec intertrial interval) training session on a hippocampus-dependent (hidden platform) or dorsal striatal–dependent (visible platform) tasks in a water maze. After the completion of training, rats received an intraperitoneal injection of the nonselective COX inhibitor indomethacin, the COX-1–specific inhibitor piroxicam, the COX-2–specific inhibitorN-[2-cyclohexyloxy-4-nitrophenyl]-methanesulfonamide (NS-398), vehicle (45% 2-hydroxypropyl-β-cyclodextrin in distilled water), or saline. On a two-trial retention test session 24 h later, latency to mount the escape platform was used as a measure of memory. In the hidden platform task, the retention test escape latencies of rats administered indomethacin (5 and 10 mg/kg) or NS-398 (2 and 5 mg/kg) were significantly higher than those of vehicle-treated rats, indicating an impairment in retention. Injections of indomethacin or NS-398 that were delayed 2 h post-training had no effect on retention. Post-training indomethacin or NS-398 had no influence on retention of the visible platform version of the water maze at any of the doses administered. Furthermore, selective inhibition of COX-1 via post-training piroxicam administration had no effect on retention of either task. These findings indicate that COX-2 is a required biochemical component mediating the consolidation of hippocampal-dependent memory.
Publisher
Cold Spring Harbor Laboratory
Subject
Cellular and Molecular Neuroscience,Cognitive Neuroscience,Neuropsychology and Physiological Psychology
Cited by
124 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献