Field manipulation of competition among hybrids reveals dynamic and highly stable features of a complex fitness landscape driving adaptive radiation

Author:

Martin Christopher H.ORCID,Gould Katelyn

Abstract

AbstractThe effect of the environment on fitness in natural populations is a fundamental question in evolutionary biology. However, experimental manipulations of environment and phenotype are rare. Thus, the relative importance of the competitive environment versus intrinsic organismal performance in shaping the location, height, and fluidity of fitness peaks and valleys remains largely unknown. We experimentally tested the effect of competitive environment on the fitness landscape driving the evolution of novelty in a sympatric adaptive radiation of a generalist and two trophic specialist pupfishes, a scale-eater and molluscivore, endemic to San Salvador Island, Bahamas. We manipulated phenotypes, by generating 2,611 F4/F5 lab-reared hybrids, and competitive environment, by altering frequencies of rare phenotypes between high- and low-frequency field enclosures, then tracked hybrid survival in two natural lake populations on San Salvador. We found no evidence of frequency-dependent effects on survival fitness landscapes, indicating robustness to the competitive environment. Although survival surfaces favored alternate phenotypes between lakes, joint fitness estimation across lake environments supported multiple fitness peaks for generalist and molluscivore phenotypes and a large fitness valley isolating the most divergent scale-eater phenotype, strikingly similar to a previous independent field experiment. The consistency of this complex fitness landscape across competitive environments, multivariate trait axes, and spatiotemporal heterogeneity provides surprising evidence of stasis in major features of fitness landscapes despite substantial environmental variance, possibly due to absolute biomechanical constraints on diverse prey capture strategies within this radiation. These results challenge competitive speciation theory and highlight the interplay between organism and environment underlying static and dynamic features of the adaptive landscape.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3