A multiscale stratigraphic investigation of the context of StW 573 ‘Little Foot’ and Member 2, Sterkfontein Caves, South Africa

Author:

Bruxelles LaurentORCID,Stratford Dominic J.,Maire Richard,Pickering Travis R.,Heaton Jason L.,Beaudet Amelie,Kuman Kathleen,Crompton Robin,Carlson Kris J.,Jashashvili Tea,McClymont Juliet,Leader George M.,Clarke Ronald J.

Abstract

AbstractThe Sterkfontein Caves has an 80 year history of yielding remarkable evidence of hominin evolution and is currently the world’s richest Australopithecus-beafing site. Included in Sterkfontein’s hominin assemblage is StW 573 (‘Little Foot’). Discovered in the Member 2 deposit in the Silberberg Grotto, StW 573 represents the most complete Australopithecus skeleton yet found. Because of its importance to the fossil hominin record, the geological age of Little Foot has been the subject of significant debate. Two main hypotheses have been proposed regarding the formation and age of Member 2 and by association StW 573. The first, proposes that Member 2 formed relatively rapidly, starting to accumulate at around 2.8 million years ago and that the unit is isolated to the Silberberg Grotto - the underlying chambers and passages forming later. The second proposes that Member 2 formed slowly, its accumulation starting before 3.67 million years ago and that the deposit extends into the Milner Hall and close to the base of the cave system. Both assume a primary association between StW 573 and Member 2, although which sediments in the Silberberg Grotto are associated with Member 2 has also been questioned. Recently a third alternative hypothesis questioning the association of StW 573 to Member 2 sediments proposed a ‘two-stage burial scenario’ in which sediments associated with StW 573 represent a secondary and mixed-age deposit reworked from a higher cave. The stratigraphic and sedimentological implications of these hypotheses are tested here through the application of a multiscale investigation of Member 2, with reference to the taphonomy of the Little Foot skeleton. The complete infilling sequence of Member 2 is described and depositional units are tracked across all exposures of the deposit in the Silberberg Grotto and into the Milner Hall. Facies development follows patterns characteristic of colluvially accumulated taluses with 30-40° angles of repose developing coarser distal facies. Sediments are generally stratified and conformably deposited in a sequence of silty sands eroded from well-developed lateritic soils on the landscape surface. Voids, clasts and bioclasts are organized consistently across and through Member 2 according to the underlying deposit geometry, indicating a gradual deposit accretion with no distinct collapse facies evident, no successive debris flow accumulation, and only localized intra-unit post- depositional modification. The stratigraphy and sedimentology of Member 2 supports a simple single-stage accumulation process through which Member 2 partially fills the Silberberg Grotto and extends into the deeper chambers and passages of the Sterkfontein Caves. Through this work we demonstrate at multiple scales the primary association between the sediments of Member 2 and the StW 573 ‘Little Foot’ skeleton.

Publisher

Cold Spring Harbor Laboratory

Reference107 articles.

1. Notes on talus formation in different climates;Geografiska Annäler,1979

2. Brief communication: Revised age estimates of Australopithecus-bearing deposits at Sterkfontein;South Africa. Am. J. Phys. Anthropol,2002

3. Field observations of a debris flow event in the Dolomites

4. Les coulees de debris. In Bertran P. (dir.), Dépôts de pente continentaux: dynamique et faciès;Quaternaire, suppl,2004

5. Bertran, P. , Francou, B. , Texier, J.P. , 1995. Stratified slope deposits: the stone-banked sheets and lobes model. Ž. In: Slaymaker, O. Ed. , Steepland Geomorphology. Wiley, Chichester, pp. 147–169.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3