Structural basis for relief of the sarcoplasmic reticulum Ca2+-ATPase inhibition by phospholamban at saturating Ca2+ conditions

Author:

Gortari Eli Fernández-de,Michel Espinoza-Fonseca L.

Abstract

AbstractWe have performed extensive atomistic molecular dynamics simulations to probe the structural mechanism for relief of sarcoplasmic reticulum Ca2+-ATPase (SERCA) inhibition by phospholamban (PLB) at saturating Ca2+ conditions. Reversal of SERCA-PLB inhibition by saturating Ca2+ operates as a physiological rheostat to reactivate SERCA function in the absence of PLB phosphorylation. Simulation of the inhibitory complex at super-physiological Ca2+ concentrations ([Ca2+]=10 mM) revealed that calcium ions interact primarily with SERCA and the lipid headgroups, but not with the cytosolic domain of PLB or the cytosolic side of the SERCA-PLB interface. At this [Ca2+], a single Ca2+ ion is translocated from the cytosol to the transmembrane transport sites. We used this Ca2+-bound complex as an initial structure to simulate the effects of saturating Ca2+ at physiological conditions ([Ca2+]total≈400 μM). At these conditions, ~30% of the Ca2+-bound complexes exhibit structural features that correspond to an inhibited state. However, in ~70% of the Ca2+-bound complexes, Ca2+ moves to transport site I, recruits Glu771 and Asp800, and disrupts key inhibitory contacts involving conserved PLB residue Asn34. Structural analysis showed that Ca2+ induces only local changes in interresidue inhibitory interactions, but does not induce dissociation, repositioning or changes in the structural dynamics of PLB. Upon relief of SERCA inhibition, Ca2+ binding produces a productive site I configuration that is sufficient for subsequent SERCA activation. We propose that at saturating [Ca2+] and in the absence of PLB phosphorylation, binding of a single Ca2+ ion in the transport sites rapidly shifts the equilibrium toward a non-inhibited SERCA-PLB complex.

Publisher

Cold Spring Harbor Laboratory

Reference84 articles.

1. The sarcoplasmic Ca2+-ATPase: design of a perfect chemi-osmotic pump

2. Comparative studies of cardiac and skeletal sarcoplasmic reticulum ATPases. Effect of a phospholamban antibody on enzyme activation by Ca2+;J Biol Chem,1993

3. Molecular mechanism of regulation of Ca2+ pump ATPase by phospholamban in cardiac sarcoplasmic reticulum. Effects of synthetic phospholamban peptides on Ca2+ pump ATPase;The Journal of biological chemistry,1992

4. Phospholamban: a crucial regulator of cardiac contractility

5. Characterizing Phospholamban to Sarco(endo)plasmic Reticulum Ca2+-ATPase 2a (SERCA2a) Protein Binding Interactions in Human Cardiac Sarcoplasmic Reticulum Vesicles Using Chemical Cross-linking

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3