Receptor uptake arrays for vitamin B12, siderophores and glycans shape bacterial communities

Author:

Frank Steven A.

Abstract

Molecular variants of vitamin B12, siderophores and glycans occur. To take up variant forms, bacteria may express an array of receptors. The gut microbeBacteroides thetaiotaomicronhas three different receptors to take up variants of vitamin B12and 88 receptors to take up various glycans. The design of receptor arrays reflects key processes that shape cellular evolution. Competition may focus each species on a subset of the available nutrient diversity. Some gut bacteria can take up only a narrow range of carbohydrates, whereas species such asB. thetaiotaomicroncan digest many different complex glycans. Comparison of different nutrients, habitats, and genomes provide opportunity to test hypotheses about the breadth of receptor arrays. Another important process concerns fluctuations in nutrient availability. Such fluctuations enhance the value of cellular sensors, which gain information about environmental availability and adjust receptor deployment. Bacteria often adjust receptor expression in response to fluctuations of particular carbohydrate food sources. Some species may adjust expression of uptake receptors for specific siderophores. How do cells use sensor information to control the response to fluctuations? That question about regulatory wiring relates to problems that arise in control theory and artificial intelligence. Control theory clarifies how to analyze environmental fluctuations in relation to the design of sensors and response systems. Recent advances in deep learning studies of artificial intelligence focus on the architecture of regulatory wiring and the ways in which complex control networks represent and classify environmental states. I emphasize the similar design problems that arise in cellular evolution, control theory, and artificial intelligence. I connect those broad conceptual aspects to many testable hypotheses for bacterial uptake of vitamin B12, siderophores and glycans.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3