Author:
Babenko V.V.,Golomidova A.K.,Ivanov P.A.,Letarova M.A.,Kulikov E.E.,Manolov A.I.,Prokhorov N.S.,Kostrukova E.S.,Matyushkina D.M.,Prilipov A.G.,Maslov S.,Belalov I.S.,Clokie M.R.J.C.,Letarov A.V.
Abstract
AbstractTailed bacteriophages (Caudovirales order) are omnipresent on our planet. Their impressive ecological and evolutionary success largely relies on the bacteriophage potential to adapt to great variety of the environmental conditions found in the Biosphere. It is believed that the adaptation of bacteriophages, including short time scale adaptation, is achieved almost exclusively via the (micro)evolution processes. In order to analyze the major mechanisms driving adaptation of phage genomes in a natural habitat we used comparative genomics of G7C-like coliphage isolates obtained during 7 years period from the feces of the horses belonging to a local population. The data suggest that even at this relatively short time scale the impact of various recombination events overwhelms the impact of the accumulation of point mutations. The access to the large pool of the genes of a complex microbial and viral community of the animal gut had major effect on the evolutionary trajectories of these phages. Thus the “real world” bacteriophage evolution mechanisms may differ significantly from those observed in the simplified laboratory model systems.
Publisher
Cold Spring Harbor Laboratory
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献