Gene silencing in Cryptosporidium: A rapid approach to identify novel targets for drug development

Author:

Castellanos-Gonzalez AORCID,Martinez-Traverso GORCID,Fishbeck K,Nava S,White AC

Abstract

AbstractBackgroundCryptosporidiosis is a major cause of diarrheal disease. However, the only drug approved for cryptosporidiosis does not work well in high risk populations. Therefore, novel drugs are urgently needed. Then, the identification of novel is necessary to develop new therapies against this parasite. Recently, we have developed a rapid method to block gene expression in Cryptosporidium by using pre-assembled complexes of Cryptosporidium antisense RNA and human protein with slicer activity (Argonaute 2). We hypothesized that structural proteins, proteases, enzymes nucleotide synthesis and transcription factors are essential for parasite development, thus in this work we knock down expression of 4 selected genes: Actin, Apicomplexan DNA-binding protein (AP2), Rhomboid protein 1 (Rom 1) and nucleoside diphosphate kinase (NDK) and elucidated its role during invasion, proliferation and egress of Cryptosporidium.MethodsWe used protein transfection reagents (PTR) to introduce pre-assembled complexes of antisense RNA and human Argonaute 2 into Cryptosporidium parvum oocysts, the complexes blocked expression of Actin (Act), Transcription factor AP2 (AP2), nucleoside diphosphate kinase (DKN), and rhomboid protein 1 (Rom1). After gene silencing, we evaluated parasite reduction using In vitro models of excystation, invasion, proliferation and egress. We evaluated the potency of ellagic acid, a nucleoside diphosphate kinase inhibitor for anti-cryptosporidial activity using a model of in vitro infection with human HCT-8 cells.ResultsSilencing of Act, AP2, NDK and Rom1 reduce significantly invasion, proliferation and egress of Cryptosporidium. We showed that silencing of NDK markedly inhibited Cryptosporidium proliferation. This was confirmed by demonstration that ellagic acid reduced the number of parasites at micro molar concentrations (EC 50 =15-30 µM) without showing any toxic effect on human cells.ConclusionsOverall the results confirmed the usefulness RNA silencing can be used to identify novel targets for drug development against Cryptosporidium. We identified ellagic acid (EA), a nucleoside diphosphate kinase inhibitor also blocks Cryptosporidium proliferation. Since EA is a dietary supplement approved for human use, then this compound should be studied as a potential treatment for cryptosporidiosis.Author summaryThe World Health Organization reports diarrhea kills around 760,000 children under five every year. Cryptosporidium infection is a leading cause of diarrhea morbidity and mortality. Current therapies to treat this infection are suboptimal, therefore novel treatments are urgently needed. We used genetic tools to identify novel targets for drug development, thus in this work we evaluated the role of 4 genes during Cryptosporidium infection. We demonstrated that silencing of nucleoside-diphosphate kinase (NDK) drastically reduced invasion, proliferation and egress of this parasite. To validate these finding we used the Ellagic acid (EA) an inhibitor of NDK to treat infected intestinal cells. Our results confirmed that the EA blocks parasite proliferation on infected cells. Interestingly we observed that the ellagic acid also has anti cryptosporidial activity by inducing apoptosis. Since EA is a dietary supplement already approved for human use, then this compound has potential to be used as a rapid alternative to treat Cryptosporidiosis.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3