Translational readthrough goes unseen by natural selection

Author:

Kleppe April SnofridORCID,Bornberg-Bauer Erich

Abstract

AbstractOccasionally during protein synthesis, the ribosome bypasses the stop codon and continues translation to the next stop codon in frame. This error is called translational readthrough (TR). Earlier research suggest that TR is a relatively common error, in several taxa, yet the evolutionary relevance of this translational error is still unclear. By analysing ribosome profiling data, we have conducted species comparisons between yeasts to infer conservation of TR between orthologs. Moreover, we infer the evolutionary rate of error prone and canonically translated proteins to deduct differential selective pressure. We find that about 40% of error prone proteins in Schizosaccharomyces pombe do not have any orthologs in Saccharomyces cerevisiae, but that 60% of error prone proteins in S. pombe are undergoing canonical translation in S. cerevisiae. Error prone proteins tend to have a higher GC-content in the 3’-UTR, unlike their canonically translated ortholog. We do not find the same trends for GC-content of the CDS. We discuss the role of 3’-UTR and GC-content regarding translational readthrough. Moreover, we find that there is neither selective pressure against or for TR. We suggest that TR is a near-neutral error that goes unseen by natural selection. We speculate that TR yield neutral protein isoforms that are not being purged. We suggest that isoforms, yielded by TR, increase proteomic diversity in the cell, which is readily available upon sudden environmental shifts and which therefore may become adaptive.Author SummaryThere is an evolutionary balance act between adaptation and selection against change. Any system needs to be able to adapt facing novel environmental conditions. Simultaneously, biological systems are under selection to maintain fitness and thus undergo selection against mutations. Phenotypic mutations - translational errors during protein synthesis - have been suggested to play a role in protein evolvability by enabling quick assessment of viable phenotypes and thus enable quick adaptation. Here we test this hypothesis, by inferring evolutionary rate of proteins prone to a specific case of phenotypic mutations: translational readthrough (TR). By making use of publicly available data of yeasts, we find that TR goes unseen by natural selection and appear as a neutral event. We suggest that TR goes unseen by selection and occurs as “permissive wallflowers”, which may become relevant and yield adaptive benefits. This work highlights that stochastic processes are not necessarily under stringent selection but may prevail. In conclusion, we suggest that TR is a neutral non-adaptive process that can yield adaptive benefits.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3