Modeling and simulating networks of interdependent protein interactions

Author:

Stöecker Bianca K.ORCID,Köester JohannesORCID,Zamir EliORCID,Rahmann SvenORCID

Abstract

AbstractProtein interactions are fundamental building blocks of biochemical reaction systems underlying cellular functions. The complexity and functionality of these systems emerge not only from the protein interactions themselves but also from the dependencies between these interactions, e.g., allosteric effects, mutual exclusion or steric hindrance. Therefore, formal models for integrating and using information about such dependencies are of high interest. We present an approach for endowing protein networks with interaction dependencies using propositional logic, thereby obtaining constrained protein interaction networks (“constrained networks”). The construction of these networks is based on public interaction databases and known as well as text-mined interaction dependencies. We present an efficient data structure and algorithm to simulate protein complex formation in constrained networks. The efficiency of the model allows a fast simulation and enables the analysis of many proteins in large networks. Therefore, we are able to simulate perturbation effects (knockout and overexpression of single or multiple proteins, changes of protein concentrations). We illustrate how our model can be used to analyze a partially constrained human adhesome network. Comparing complex formation under known dependencies against without dependencies, we find that interaction dependencies limit the resulting complex sizes. Further we demonstrate that our model enables us to investigate how the interplay of network topology and interaction dependencies influences the propagation of perturbation effects. Our simulation software CPINSim (for Constrained Protein Interaction Network Simulator) is available under the MIT license at http://github.com/BiancaStoecker/cpinsimandviaBioconda (https://bioconda.github.io).Author summaryProteins are the main molecular tools of cells. They do not act individually, but rather collectively in order to peform complex cellular actions. Recent years have led to a relatively good understanding about which proteins may interact, both in general and in specific conditions, leading to the definition of protein interaction networks. However, the reality is more complex, and protein interactions are not independent of each other. Instead, several potential interaction partners of a specific protein may compete for the same binding domain, making all of these interactions mutually exclusive. Additionally, a binding of a protein to another one can enable or prevent their interactions with other proteins, even if those interactions are mediated by different domains. Hence, understanding how the dependencies (or constraints) of protein interactions affect the behaviour of the system is an important and timely goal, as data is now becoming available. Here we present a mathematical framework to formalize such interaction constraints and incorporate them into the simulation of protein complex formation. With our framework, we are able to better understand how perturbations of single proteins (knockout or overexpression) impact other proteins in the network.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3