Streptococcus agalactiae induces placental macrophages to release extracellular traps loaded with tissue remodeling enzymes via an oxidative-burst-dependent mechanism

Author:

Doster Ryan S.ORCID,Sutton Jessica A.,Rogers Lisa M.,Aronoff David M.,Gaddy Jennifer A.ORCID

Abstract

AbstractStreptococcus agalactiae, or Group B Streptococcus (GBS), is a common perinatal pathogen. GBS colonization of the vaginal mucosa during pregnancy is a risk factor for invasive infection of the fetal membranes (chorioamnionitis) and its consequences such as membrane rupture, preterm labor, stillbirth, and neonatal sepsis. Placental macrophages, or Hofbauer cells, are fetally-derived macrophages present within placental and fetal membrane tissues that perform vital functions for fetal and placental development, including supporting angiogenesis, tissue remodeling, and regulation of maternal-fetal tolerance. Although placental macrophages, as tissue-resident innate phagocytes, are likely to engage invasive bacteria such as GBS, there is limited information regarding how these cells respond to bacterial infection. Here, we demonstrate in vitro that placental macrophages release macrophage extracellular traps (METs) in response to bacterial infection. Placental macrophage METs contain proteins including histones, myeloperoxidase, and neutrophil elastase similar to neutrophil extracellular traps and are capable of killing GBS cells. MET release from these cells occurs by a process that depends on the production of reactive oxygen species. Placental macrophage METs also contain matrix metalloproteases that are released in response to GBS and could contribute to fetal membrane weakening during infection. MET structures were identified within human fetal membrane tissues infected ex vivo, suggesting that placental macrophages release METs in response to bacterial infection during chorioamnionitis.ImportanceStreptococcus agalactiae, also known as Group B Streptococcus (GBS), is a common pathogen during pregnancy where infection can result in chorioamnionitis, preterm premature rupture of membranes (PPROM), preterm labor, stillbirth, and neonatal sepsis. Mechanisms by which GBS infection results in adverse pregnancy outcomes are still incompletely understood. This study evaluated interactions between GBS and placental macrophages. The data demonstrate that in response to infection, placental macrophages release extracellular traps capable of killing GBS. Additionally, this work establishes that proteins associated with extracellular trap fibers include several matrix metalloproteinases that have been associated with chorioamnionitis. In the context of pregnancy, placental macrophage responses to bacterial infection might have beneficial and adverse consequences, including protective effects against bacterial invasion but also releasing important mediators of membrane breakdown that could contribute to membrane rupture or preterm labor.

Publisher

Cold Spring Harbor Laboratory

Reference96 articles.

1. Born Too Soon: The global epidemiology of 15 million preterm births

2. March of Dimes. 10/2013 2013. Permaturity Campaign, on March of Dimes. http://www.marchofdimes.org/mission/the-economic-and-societal-costs.aspx. Accessed 1/21/2015.

3. WHO. 2012. Born Too Soon: The Global Action Report in Preterm Birth.

4. Organization WH. November 2016 2016. Preterm Birth: Fact Sheet, on WHO 2017. http://www.who.int/mediacentre/factsheets/fs363/en/. Accessed 9/26/2017.

5. Global, regional, and national causes of under-5 mortality in 2000–15: an updated systematic analysis with implications for the Sustainable Development Goals

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3