Evidence that anterograde learning interference depends on the stage of learning of the interferer: blocked versus interleaved training

Author:

Ning RuijingORCID,Wright Beverly A.

Abstract

Training on one task (task A) can disrupt learning on a subsequently trained task (task B), illustrating anterograde learning interference. We asked whether the induction of anterograde learning interference depends on the learning stage that task A has reached when the training on task B begins. To do so, we drew on previous observations in perceptual learning in which completing all training on one task before beginning training on another task (blocked training) yielded markedly different learning outcomes than alternating training between the same two tasks for the same total number of trials (interleaved training). Those blocked versus interleaved contrasts suggest that there is a transition between two differentially vulnerable learning stages that is related to the number of consecutive training trials on each task, with interleaved training presumably tapping acquisition, and blocked training tapping consolidation. Here, we used the blocked versus interleaved paradigm in auditory perceptual learning in a case in which blocked training generated anterograde—but not its converse, retrograde—learning interference (A→B, not B←A). We report that anterograde learning interference of training on task A (interaural time difference discrimination) on learning on task B (interaural level difference discrimination) occurred with blocked training and diminished with interleaved training, with faster rates of interleaving leading to less interference. This pattern held for across-day, within-session, and offline learning. Thus, anterograde learning interference only occurred when the number of consecutive training trials on task A surpassed some critical value, consistent with other recent evidence that anterograde learning interference only arises when learning on task A has entered the consolidation stage.

Funder

Defense Advanced Research Projects Agency

Biological Technologies Office

ElectRx

Space and Naval Warfare Systems Center

Publisher

Cold Spring Harbor Laboratory

Subject

Cellular and Molecular Neuroscience,Cognitive Neuroscience,Neuropsychology and Physiological Psychology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3