Multi-State Design of Flexible Proteins Predicts Sequences Optimal for Conformational Change

Author:

Sauer MarionORCID,Sevy Alexander M.ORCID,Crowe James E.ORCID,Meiler Jens

Abstract

AbstractComputational protein design of an ensemble of conformations for one protein – i.e., multi-state design – determines the side chain identity by optimizing the energetic contributions of that side chain in each of the backbone conformations. Sampling the resulting large sequence-structure search space limits the number of conformations and the size of proteins in multi-state design algorithms. Here, we demonstrated that the REstrained CONvergence (RECON) algorithm can simultaneously evaluate the sequence of large proteins that undergo substantial conformational changes, such as viral surface glycoproteins. Simultaneous optimization of side chain conformations across all conformations resulted in an increase of 30% to 40% in sequence conservation when compared to single-state designs. More importantly, the sampled sequence space of RECON designs resembled the evolutionary sequence space of functional proteins. This finding was especially true for sequence positions that require substantial changes in their local environment across an ensemble of conformations. To quantify this rewiring of contacts at a certain position in sequence and structure, we introduced a new metric designated ‘contact proximity deviation’ that enumerates contact map changes. This measure allows mapping of global conformational changes into local side chain proximity adjustments, a property not captured by traditional global similarity metrics such as RMSD or local similarity metrics such as changes in φ and ψ angles.Author SummaryMulti-state design can be used to engineer proteins that need to exist in multiple conformations or that bind to multiple partner molecules. In essence, multi-state design selects a compromise of protein sequences that allow for an ensemble of protein conformations, or states, associated with a particular biological function. In this paper, we used the REstrained CONvergence (RECON) algorithm with Rosetta to show that multi-state design of flexible proteins predicts sequences optimal for conformational change, mimicking mutation preferences sampled in evolution. Modeling optimal local side chain physicochemical environments within an ensemble selected significantly more native-like sequences than selections performed when all conformations states are designed independently. This outcome was particularly true for amino acids whose local side chain environment change between conformations. To quantify such contact map changes, we introduced a novel metric to show that sequence conservation is dependent on protein flexibility, i.e., changes in local side chain environments between stated limit the space of tolerated mutations. Additionally, such positions in sequence and structure are more likely to be energetically frustrated, at least in some states. Importantly, we showed that multi-state design over an ensemble of conformations (space) can explore evolutionary tolerated sequence space (time), thus enabling RECON to not only design proteins that require multiple states for function but also predict mutations that might be tolerated in native proteins but have not yet been explored by evolution. The latter aspect can be important to anticipate escape mutations, for example in pathogens or oncoproteins.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3