Differentiation-induced gene expression in 3T3-L1 preadipocytes: CCAAT/enhancer binding protein interacts with and activates the promoters of two adipocyte-specific genes.

Author:

Christy R J,Yang V W,Ntambi J M,Geiman D E,Landschulz W H,Friedman A D,Nakabeppu Y,Kelly T J,Lane M D

Abstract

Previous studies have shown that differentiation of 3T3-L1 preadipocytes leads to the transcriptional activation of a group of adipose-specific genes. As an approach to defining the mechanism responsible for activating the expression of these genes, we investigated the binding of nuclear factors to the promoters of two differentiation-induced genes, the 422(aP2) and stearoyl-CoA desaturase 1 (SCD1) genes. DNase I footprinting and gel retardation analysis identified two binding regions within the promoters of each gene that interact with nuclear factors present in differentiated 3T3-L1 adipocytes. One differentiation-induced nuclear factor interacts specifically with a single binding site in the promoter of each gene. Competition experiments showed that the interaction of this nuclear factor with the SCD1 promoter was prevented specifically by a synthetic oligonucleotide corresponding to the site footprinted in the 422(aP2) promoter. Several lines of evidence indicate that the differentiation-induced nuclear factor is CCAAT/enhancer binding protein (C/EBP), a DNA-binding protein first isolated from rat liver. Bacterially expressed recombinant C/EBP binds to the same site at which the differentiation-specific nuclear factor interacts within the promoter of each gene. Northern analysis with RNA from 3T3-L1 cells shows that C/EBP mRNA abundance increases markedly during differentiation. Transient cotransfection studies using a C/EBP expression vector demonstrate that C/EBP can function as a trans-activator of both the 422(aP2) and SCD1 gene promoters.

Publisher

Cold Spring Harbor Laboratory

Subject

Developmental Biology,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3