Human CardioChimeras: Creation of a Novel ‘Next Generation’ Cardiac Cell

Author:

Firouzi Fareheh,Choudhury Sarmistha Sinha,Broughton Kathleen,Salazar Adriana,Sussman Mark A

Abstract

AbstractBackgroundCardioChimeras (CCs) produced by fusion of murine c-kit+ cardiac interstitial cells (cCIC) with mesenchymal stem cells (MSCs) promote superior structural and functional recovery in a mouse model of myocardial infarction (MI) compared to either precursor cell alone or in combination. Creation of human CardioChimeras (hCC) represents the next step in translational development of this novel cell type, but new challenges arise when working with cCICs isolated and expanded from human heart tissue samples. The objective of the study was to establish a reliable cell fusion protocol for consistent optimized creation of hCCs and characterize fundamental hCC properties.Methods and ResultsCell fusion was induced by incubating human cCICs and MSCs at a 2:1 ratio with inactivated Sendai virus. Hybrid cells were sorted into 96-well microplates for clonal expansion to derive unique cloned hCCs, which were then characterized for various cellular and molecular properties. hCCs exhibited enhanced survival relative to the parent cells and promoted cardiomyocyte survival in response to serum deprivation in vitro.ConclusionsThe generation of hCC is demonstrated and validated in this study, representing the next step toward implementation of a novel cell product for therapeutic development. Feasibility of creating human hybrid cells prompts consideration of multiple possibilities to create novel chimeric cells derived from cells with desirable traits to promote healing in pathologically damaged myocardium.Clinical Perspective“Next generation” cell therapeutics will build upon initial findings that demonstrate enhanced reparative action of combining distinct cell types for treatment of cardiomyopathic injury.Differential biological properties of various cell types are challenging for optimization of delivery, engraftment, persistence, and synergistic action when used in combination.Creation of a novel hybrid cell called a CardioChimera overcomes limitations inherent to use of multiple cell types.CardioChimeras exhibit unique properties relative to either parental cell anticipated to be advantageous in cellular therapeutic applications.CardioChimeras have now been created and characterized using cells derived from human heart tissue, advancing initial proof of concept previously demonstrated with mice.CardioChimeras represent an engineered solution that can be implemented as a path forward for improving the outcome of myocardial cell therapy.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3