Population Structure Drives Differential Methicillin-resistant Staphylococcus aureus Colonization Dynamics

Author:

Short Christopher T.,Samore Matthew,Lofgren Eric T.,

Abstract

AbstractBackgroundUsing a model of methicillin-resistant Staphylococcus aureus (MRSA) within an intensive care unit (ICU), we explore how differing hospital population structures impact these infection dynamics.MethodsUsing a stochastic compartmental model of an 18-bed ICU, we compared the rates of MRSA acquisition across three potential population structures: a Single Staff Type (SST) model with nurses and physicians as a single staff type, a model with separate staff types for nurses and physicians (Nurse-MD model), and a Metapopulation model where each nurse was assigned a group of patients. By varying the proportion of time spent with the assigned patient group (γ) within the Metapopulation model, we explored whether simpler models may be acceptable approximations to more realistic patient-healthcare staff contact patterns.ResultsThe SST, Nurse-MD, and Metapopulation models had a mean annual number of cumulative MRSA acquisitions of 40.6, 32.2 and 19.6 respectively. All models were sensitive to the same parameters in the same direction, although the Metapopulation model was less sensitive. The number of acquisitions varied non-linearly by values of γ, with values below 0.40 resembling the Nurse-MD model, while values above that converged toward the metapopulation structure.DiscussionThe population structure of a modeled hospital has considerable impact on model results, with the SST model having more than double the acquisition rate of the more structured Metapopulation model. While the direction of parameter sensitivity remained the same, the magnitude of these differences varied, producing different infection rates across relatively similar populations. The non-linearity of the model’s response to differing values of γ suggests only a narrow space of relatively dispersed nursing assignments where simple model approximations are appropriate.ConclusionSimplifying assumptions around how a hospital population is modeled, especially assuming random mixing, may overestimate infection rates and the impact of interventions.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3