Dual Near Infrared Two-Photon Microscopy for Deep-Tissue Dopamine Nanosensor Imaging

Author:

Del Bonis-O’Donnell Jackson T.,Page Ralph H.,Beyene Abraham G.,Tindall Eric G.,McFarlane Ian,Landry Markita P.

Abstract

A key limitation for achieving deep imaging in biological structures lies in photon absorption and scattering leading to attenuation of fluorescence. In particular, neurotransmitter imaging is challenging in the biologically-relevant context of the intact brain, for which photons must traverse the cranium, skin and bone. Thus, fluorescence imaging is limited to the surface cortical layers of the brain, only achievable with craniotomy. Herein, we describe optimal excitation and emission wavelengths for through-cranium imaging, and demonstrate that near-infrared emissive nanosensors can be photoexcited using a two-photon 1560 nm excitation source. Dopamine-sensitive nanosensors can undergo two-photon excitation, and provide chirality-dependent responses selective for dopamine with fluorescent turn-on responses varying between 20% and 350%. We further calculate the two-photon absorption cross-section and quantum yield of dopamine nanosensors, and confirm a two-photon power law relationship for the nanosensor excitation process. Finally, we show improved image quality of the nanosensors embedded 2 mm deep into a brain-mimetic tissue phantom, whereby one-photon excitation yields 42% scattering, in contrast to 4% scattering when the same object is imaged under two-photon excitation. Our approach overcomes traditional limitations in deep-tissue fluorescence microscopy, and can enable neurotransmitter imaging in the biologically-relevant milieu of the intact and living brain.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3