Sexual dimorphism and plasticity in wing shape in three Diptera

Author:

Reis Micael,Siomava Natalia,Wimmer Ernst A.ORCID,Posnien NicoORCID

Abstract

AbstractThe ability of powered flight in insects facilitated their great evolutionary success allowing them to occupy various ecological niches. Beyond this primary task, wings are often involved in various premating behaviors, such as the generation of courtship songs and the initiation of mating in flight. These specific functions imply special adaptations of wing morphology, as well as sex-specific wing morphologies. Although wing morphology has been extensively studied in Drosophila melanogaster, a comprehensive understa nding of sexual wing shape dimorphisms and developmental plasticity is missing for other Diptera. Therefore, we raised flies of the three Diptera species Drosophila melanogaster, Ceratitis capitata and Musca domestica at different environmental conditions and applied geometric morphometrics to analyze wing shape. Our data showed extensive interspecific differences in wing shape, as well as a clear sexual wing shape dimorphism in all three species. We revealed an impact of different rearing temperatures wing shape in all three species, which was mostly explained by plasticity in wing size in D. melanogaster. Rearing densities had significant effects on allometric wing shape in D. melanogaster, while no obvious effects were observed for the other two species. Additionally, we do not find evidence for sex-specific response to different rearing conditions in all three species. We determined species-specific and common trends in shape alterations, and we hypothesize developmental and functional implications of our data.Contribution to the Field StatementThe size and shape of organisms and organs must be tightly controlled during development to ensure proper functionality. However, morphological traits vary considerably in nature contributing to phenotypic diversity. Such variation can be the result of evolutionary adaptations as well as plasticity for example as reaction to changing environmental conditions during development. It is therefore a major aim in Biology to unravel the processes that control differences in adult morphology. Insect wings are excellent models to study how organ size and shape evolves because they facilitate basic tasks such as mating and feeding. Accordingly, a tremendous variety of wings sizes and shapes evolved in nature. Additionally, plasticity in wing morphology in response to different rearing conditions has been observed in many insects contributing to phenotypic diversity. In this work we applied Geometric Morphometrics to study wing shape in the three Diptera species: the Mediterranean fruit fly Ceratitis capitata, the Vinegar fly Drosophila melanogaster and the housefly Musca domestica. Flies were raised in different temperature and density regimes that allowed us to study the effects of these environmental factors on wing shape. Additionally, in accordance with different mating behaviors of these flies, we observed a clear sexual shape dimorphism in all three species. Since the three studied species represent serious pests and disease vectors, our findings may contribute to existing and future monitoring efforts.

Publisher

Cold Spring Harbor Laboratory

Reference94 articles.

1. Adams, D. C. , Collyer, M. L. , Kaliontzopoulou, A. , and Baken, E. (2021). Geomorph: Software for geometric morphometric analyses. R package version 3.3.2.

2. The Decapentaplegic morphogen gradient: from pattern formation to growth regulation

3. Decapentaplegic and growth control in the developing Drosophila wing

4. Evolution of Sexual Dimorphism in the Lepidoptera

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3